Search results for "unique continuation principle"

showing 2 items of 2 documents

Quantitative uniqueness estimates for pp-Laplace type equations in the plane

2016

Abstract In this article our main concern is to prove the quantitative unique estimates for the p -Laplace equation, 1 p ∞ , with a locally Lipschitz drift in the plane. To be more precise, let u ∈ W l o c 1 , p ( R 2 ) be a nontrivial weak solution to div ( | ∇ u | p − 2 ∇ u ) + W ⋅ ( | ∇ u | p − 2 ∇ u ) = 0  in  R 2 , where W is a locally Lipschitz real vector satisfying ‖ W ‖ L q ( R 2 ) ≤ M for q ≥ max { p , 2 } . Assume that u satisfies certain a priori assumption at 0. For q > max { p , 2 } or q = p > 2 , if ‖ u ‖ L ∞ ( R 2 ) ≤ C 0 , then u satisfies the following asymptotic estimates at R ≫ 1 inf | z 0 | = R sup | z − z 0 | 1 | u ( z ) | ≥ e − C R 1 − 2 q log R , where C > 0 depends …

Laplace's equationLaplace transformPlane (geometry)Applied MathematicsWeak solution010102 general mathematicsta111Type (model theory)Lipschitz continuity01 natural sciencesBeltrami equation010101 applied mathematicsCombinatoricspp-Laplace equationBeltrami equationstrong unique continuation principleUniqueness0101 mathematicsAnalysisMathematicsNonlinear Analysis: Theory, Methods and Applications
researchProduct

Inverse problems for $p$-Laplace type equations under monotonicity assumptions

2016

We consider inverse problems for $p$-Laplace type equations under monotonicity assumptions. In two dimensions, we show that any two conductivities satisfying $\sigma_1 \geq \sigma_2$ and having the same nonlinear Dirichlet-to-Neumann map must be identical. The proof is based on a monotonicity inequality and the unique continuation principle for $p$-Laplace type equations. In higher dimensions, where unique continuation is not known, we obtain a similar result for conductivities close to constant.

010101 applied mathematicsunique continuation principleMathematics - Analysis of PDEsinverse problems010102 general mathematicsFOS: MathematicsDirichlet-to-Neumann map35J92 35R300101 mathematics01 natural sciencesp-Laplace equationinversio-ongelmatAnalysis of PDEs (math.AP)
researchProduct